The Argument of the Riemann Ξ Function off the Critical Line
نویسنده
چکیده
We examine the behaviour of the zeros of the real and imaginary parts of ξ(s) on the vertical line Rs = 1/2 + λ, for λ 6= 0. This can be rephrased in terms of studying the zeros of families of entire functions A(s) = 1 2 (ξ(s+λ)+ξ(s−λ)) and B(s) = 1 2i (ξ(s+λ)−ξ(s−λ)). We will prove some unconditional analogues of results appearing in [3], specifically that the normalized spacings of the zeros of these functions converges to a limiting distribution consisting of equal spacings of length 1, in contrast to the expected GUE distribution for the same zeros at λ = 0. We will also show that, outside of a small exceptional set, the zeros of Rξ(s) and Iξ(s) interlace on Rs = 1/2 + λ. These results will depend on showing that away from the critical line, arg ξ(s) is well behaved.
منابع مشابه
A Note on the Riemann Hypothesis for the Constant Term of the Eisenstein Series
In this paper, we give an another proof of Theorem 3 in [4]. Theorem 3 in [4] is the following theorem. Theorem 1. Let ζ(s) be the Riemann zeta function and let ζ * (s) = π −s/2 Γ(s/2)ζ(s). For each y ≥ 1 the constant term of the Eisenstein series a 0 (y, s) := ζ * (2s)y s + ζ * (2 − 2s)y 1−s (1) is a meromorphic function that satisfies the modified Riemann hypothesis. More precisely , there is...
متن کاملRiemann Hypothesis, Matrix/Gravity Correspondence and FZZT Brane Partition Functions
We investigate the physical interpretation of the Riemann zeta function as a FZZT brane partition function associated with a matrix/gravity correspondence. The Hilbert-Polya operator in this interpretation is the master matrix of the large N matrix model. Using a related function Ξ(z) we develop an analog between this function and the Airy function Ai(z) of the Gaussian matrix model. The analog...
متن کاملTwisted Second Moments and Explicit Formulae of the Riemann Zeta-Function
Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...
متن کاملZero Spacing Distributions for Differenced L-Functions
The paper studies the local zero spacings of deformations of the Riemann ξ-function under certain averaging and differencing operations. For real h we consider the entire functions Ah(s) := 1 2 (ξ(s + h) + ξ(s− h)) and Bh(s) = 1 2i (ξ(s+ h)− ξ(s− h)) . For |h| ≥ 1 2 the zeros of Ah(s) and Bh(s) all lie on the critical line R(s) = 1 2 and are simple zeros. The number of zeros of these functions ...
متن کاملCounting distinct zeros of the Riemann zeta-function
Bounds on the number of simple zeros of the derivatives of a function are used to give bounds on the number of distinct zeros of the function. The Riemann ξ-function is defined by ξ(s) = H(s)ζ(s), where H(s) = 2s(s−1)π 1 2 Γ( 1 2 s) and ζ(s) is the Riemann ζ-function. The zeros of ξ(s) and its derivatives are all located in the critical strip 0 < σ < 1, where s = σ+ it. Since H(s) is regular an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009